Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.538
Filtrar
1.
Bull Math Biol ; 86(5): 53, 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38594319

RESUMO

Analyzing the impact of the adaptive immune response during acute hepatitis B virus (HBV) infection is essential for understanding disease progression and control. Here we developed mathematical models of HBV infection which either lack terms for adaptive immune responses, or assume adaptive immune responses in the form of cytolytic immune killing, non-cytolytic immune cure, or non-cytolytic-mediated block of viral production. We validated the model that does not include immune responses against temporal serum hepatitis B DNA (sHBV) and temporal serum hepatitis B surface-antigen (HBsAg) experimental data from mice engrafted with human hepatocytes (HEP). Moreover, we validated the immune models against sHBV and HBsAg experimental data from mice engrafted with HEP and human immune system (HEP/HIS). As expected, the model that does not include adaptive immune responses matches the observed high sHBV and HBsAg concentrations in all HEP mice. By contrast, while all immune response models predict reduction in sHBV and HBsAg concentrations in HEP/HIS mice, the Akaike Information Criterion cannot discriminate between non-cytolytic cure (resulting in a class of cells refractory to reinfection) and antiviral block functions (of up to 99 % viral production 1-3 weeks following peak viral load). We can, however, reject cytolytic killing, as it can only match the sHBV and HBsAg data when we predict unrealistic levels of hepatocyte loss.


Assuntos
Vírus da Hepatite B , Hepatite B , Camundongos , Humanos , Animais , Vírus da Hepatite B/genética , Antígenos de Superfície da Hepatite B/genética , Conceitos Matemáticos , Modelos Biológicos , Antivirais/uso terapêutico
2.
Arch Virol ; 169(5): 103, 2024 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-38632180

RESUMO

Missense mutations in certain small envelope proteins diminish the efficacy of antibodies. Consequently, tracking the incidence and types of vaccine-escape mutations (VEMs) was crucial both before and after the introduction of universal hepatitis B vaccination in Japan in 2016. In this study, we isolated hepatitis B virus (HBV) DNA from 58 of 169 hepatitis B surface antigen (HBsAg)-positive blood samples from Japanese blood donors and determined the nucleotide sequence encoding the small envelope protein. DNA from six (10%) of the samples had VEMs, but no missense mutations, such as G145R, were detected. Complete HBV genome sequences were obtained from 29 of the 58 samples; the viral genotype was A1 in one (3%), A2 in three (10%), B1 in nine (31%), B2 in five (17%), B4 in one (3%), and C2 in 10 (34%) samples. Tenofovir-resistance mutations were detected in two (7%) samples. In addition, several core promoter mutations, such as 1762A>T and 1764G>A, and a precore nonsense mutation, 1986G>A, which are risk factors for HBV-related chronic liver disease, were detected. These findings provide a baseline for future research and highlight the importance of ongoing monitoring of VEMs and drug resistance mutations in HBV DNA from HBsAg-positive blood donors without HBV antibodies.


Assuntos
Hepatite B Crônica , Hepatite B , Humanos , Vírus da Hepatite B/genética , Antígenos de Superfície da Hepatite B/genética , Japão , Doadores de Sangue , DNA Viral/genética , Mutação , Genótipo
3.
Virol J ; 21(1): 92, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38654327

RESUMO

BACKGROUND: Occult HBV infection (OBI) is a special form of hepatitis B virus (HBV) infection that may cause Liver cirrhosis and hepatocellular carcinoma, causing significant harm to patients. Given the insidious nature of OBI, it is usually not easy to be detected. Most of the samples currently studied are concentrated on blood donors, however, patients in this special state have not been fully studied. This project aimed to study the effect of HBV S region mutations on HBsAg in patients with clinical OBI. METHODS: Collect 107 HBsAg-/HBV DNA + blood samples from Beijing Youan Hospital, Capital Medical University from August 2022 to April 2023. Next, the successfully extracted and amplified HBV DNA S regions were sequenced. Construct mutant plasmids to verify the cell function of the high-frequency mutation sites and explore the possible molecular mechanism. RESULTS: Sixty-eight HBsAg-negative samples were sequenced, revealing high-frequency amino acid substitution sites in the HBV S protein, including immune escape mutations (i.e., sY100C、sK122R、sI126T、sT131P、and sS114T) and TMD (Transmembrane domain) region substitutions (i.e., sT5A、sG10D、sF20S、and sS3N). We constructed a portion of the mutant plasmids and found that sT5A, sF20S, sG10D, sS3N, sI68T, and sI126T single point mutations or combined mutations may decrease HBsAg expression or change the antigenicity of HBsAg leading to detection failure. CONCLUSIONS: HBsAg-negative patients may show various mutations and amino acid replacement sites at high frequency in the HBV S-region, and these mutations may lead to undetectable Hepatitis B surface antigen (HBsAg), HBsAg antigenic changes or secretion inhibition.


Assuntos
DNA Viral , Antígenos de Superfície da Hepatite B , Vírus da Hepatite B , Hepatite B , Mutação , Humanos , Antígenos de Superfície da Hepatite B/genética , Antígenos de Superfície da Hepatite B/imunologia , Vírus da Hepatite B/genética , Vírus da Hepatite B/imunologia , Feminino , DNA Viral/genética , Masculino , Adulto , Pessoa de Meia-Idade , Hepatite B/virologia , Substituição de Aminoácidos , Genótipo , Adulto Jovem , Idoso
4.
PLoS Comput Biol ; 20(3): e1011238, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38466770

RESUMO

Chronic infection with hepatitis B virus (HBV) is caused by the persistence of closed circular DNA (cccDNA) in the nucleus of infected hepatocytes. Despite available therapeutic anti-HBV agents, eliminating the cccDNA remains challenging. Thus, quantifying and understanding the dynamics of cccDNA are essential for developing effective treatment strategies and new drugs. However, such study requires repeated liver biopsy to measure the intrahepatic cccDNA, which is basically not accepted because liver biopsy is potentially morbid and not common during hepatitis B treatment. We here aimed to develop a noninvasive method for quantifying cccDNA in the liver using surrogate markers in peripheral blood. We constructed a multiscale mathematical model that explicitly incorporates both intracellular and intercellular HBV infection processes. The model, based on age-structured partial differential equations, integrates experimental data from in vitro and in vivo investigations. By applying this model, we roughly predicted the amount and dynamics of intrahepatic cccDNA within a certain range using specific viral markers in serum samples, including HBV DNA, HBsAg, HBeAg, and HBcrAg. Our study represents a significant step towards advancing the understanding of chronic HBV infection. The noninvasive quantification of cccDNA using our proposed method holds promise for improving clinical analyses and treatment strategies. By comprehensively describing the interactions of all components involved in HBV infection, our multiscale mathematical model provides a valuable framework for further research and the development of targeted interventions.


Assuntos
Vírus da Hepatite B , Hepatite B , Humanos , Vírus da Hepatite B/genética , Antígenos de Superfície da Hepatite B/genética , Antígenos E da Hepatite B/genética , DNA Viral/genética , Hepatite B/tratamento farmacológico , Hepatite B/patologia , Fígado/patologia , DNA Circular , Biomarcadores , Antivirais/uso terapêutico
5.
J Med Virol ; 96(3): e29530, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38529528

RESUMO

Integration of hepatitis B virus (HBV) DNA into the human genome is recognized as an oncogenic factor and a barrier to hepatitis B cure. In the study, biopsy liver tissues were collected from adolescents and young adults with acute HBV infection younger than or equal to 35 years of age and from HBV-infected infant patients younger than or equal to 6 months of age. A high-throughput sequencing method was used to detect HBV DNA integration. Totally, 12 adolescents, young adults, and 6 infants were included. Among the 12 patients with acute HBV infection, immunohistochemical staining of intrahepatic hepatitis B surface antigen for all displayed negative results, and no HBV DNA integrants in the hepatocyte DNA were confirmed. All infant patients had elevated levels of alanine aminotransferase and high levels of serum HBV DNA. Numerous gene sites of hepatocyte DNA were integrated by HBV DNA for each infant patient, ranging from 120 to 430 integration sites. The fragile histidine triad gene was the high-frequency integrated site in the intragenic region for infant patients. In conclusion, hepatocyte DNA is integrated by HBV DNA in babies with active hepatitis B but seems seldom affected among adolescents and young adults with acute HBV infection. Infantile hepatitis B should be taken seriously considering abundant HBV DNA integration events.


Assuntos
Hepatite B Crônica , Hepatite B , Lactente , Adolescente , Humanos , Adulto Jovem , Vírus da Hepatite B/genética , DNA Viral/genética , Fígado/patologia , Antígenos de Superfície da Hepatite B/genética , Antígenos E da Hepatite B , Genômica
6.
Front Immunol ; 15: 1352929, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38545116

RESUMO

Background: HBe-antigen(Ag)-negative chronic hepatitis B virus (HBV) infection is characterized by little liver fibrosis progression and vigorous HBV-multispecific CD8+ T-cell response. Aims: To assess whether HBsAg level could discriminate different HBeAg-negative chronic HBV infection subtypes with dissimilar quality of HBV-specific CD8+ T-cell response. Methods: We recruited 63 HBeAg-negative chronic HBV infection patients in which indirect markers of liver inflammation/fibrosis, portal pressure, viral load (VL), and HBV-specific CD8+ cell effector function were correlated with HBsAg level. Results: A positive linear trend between HBsAg level and APRI, liver stiffness (LS), liver transaminases, and HBV VL, and a negative correlation with platelet count were observed. Frequency of cases with HBV-specific CD8+ T-cell proliferation against at least two HBV epitopes was higher in HBsAg < 1,000 IU/ml group. CD8+ T-cell expansion after HBVpolymerase456-63-specific stimulation was impaired in HBsAg > 1,000 IU/ml group, while the response against HBVcore18-27 was preserved and response against envelope183-91 was nearly abolished, regardless of HBsAg level. Cases with preserved HBVpolymerase456-63 CD8+ cell response had lower LS/duration of infection and APRI/duration of infection rates. HBV-polymerase456-63-specific CD8+ T-cell proliferation intensity was negatively correlated with LS/years of infection ratio. Conclusion: HBsAg > 1,000 IU/ml HBeAg-negative chronic HBV infection group shows indirect data of higher degree of inflammation, liver stiffness, and fibrosis progression speed, which are related to an impaired HBV-polymerase-specific CD8+ T-cell response.


Assuntos
Produtos do Gene pol , Hepatite B Crônica , Humanos , Vírus da Hepatite B/fisiologia , Antígenos de Superfície da Hepatite B/genética , Antígenos E da Hepatite B/genética , Inflamação , Cirrose Hepática , Linfócitos T CD8-Positivos , Alanina Transaminase , Fenótipo
7.
PLoS One ; 19(3): e0299403, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38489292

RESUMO

N-linked glycosylation is a pivotal post-translational modification that significantly influences various aspects of protein biology. Autophagy, a critical cellular process, is instrumental in cell survival and maintenance. The hepatitis B virus (HBV) has evolved mechanisms to manipulate this process to ensure its survival within host cells. Significantly, post-translational N-linked glycosylation in the large surface protein of HBV (LHBs) influences virion assembly, infectivity, and immune evasion. This study investigated the role of N-linked glycosylation of LHBs in autophagy, and its subsequent effects on HBV replication and secretion. LHBs plasmids were constructed by incorporating single-, double-, and triple-mutated N-linked glycosylation sites through amino acid substitutions at N4, N112, and N309. In comparison to the wild-type LHBs, N-glycan mutants, including N309Q, N4-309Q, N112-309Q, and N4-112-309Q, induced autophagy gene expression and led to autophagosome accumulation in hepatoma cells. Acridine orange staining of cells expressing LHBs mutations revealed impaired lysosomal acidification, suggesting potential blockage of autophagic flux at later stages. Furthermore, N-glycan mutants increased the mRNA expression of HBV surface antigen (HBsAg). Notably, N309Q significantly elevated HBx oncogene level. The LHBs mutants, particularly N309Q and N112-309Q, significantly enhanced HBV replication, whereas N309Q, N4-309Q, and N4-112-309Q markedly increased HBV progeny secretion. Remarkably, our findings demonstrated that autophagy is indispensable for the impact of N-linked glycosylation mutations in LHBs on HBV secretion, as evidenced by experiments with a 3-methyladenine (3-MA) inhibitor. Our study provides pioneering insights into the interplay between N-linked glycosylation mutations in LHBs, host autophagy, and the HBV life cycle. Additionally, we offer a new clue for further investigation into carcinogenesis of hepatocellular carcinoma (HCC). These findings underscore the potential of targeting either N-linked glycosylation modifications or the autophagic pathway for the development of innovative therapies against HBV and/or HCC.


Assuntos
Carcinoma Hepatocelular , Hepatite B , Neoplasias Hepáticas , Humanos , Vírus da Hepatite B , Carcinoma Hepatocelular/patologia , Glicosilação , Neoplasias Hepáticas/patologia , Antígenos de Superfície da Hepatite B/genética , Antígenos de Superfície da Hepatite B/metabolismo , Autofagia/genética , Proteínas de Membrana/metabolismo , Polissacarídeos/metabolismo
8.
Viruses ; 16(3)2024 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-38543689

RESUMO

HBV RNA destabilizers are a class of small-molecule compounds that target the noncanonical poly(A) RNA polymerases PAPD5 and PAPD7, resulting in HBV RNA degradation and the suppression of viral proteins including the hepatitis B surface antigen (HBsAg). AB-161 is a next-generation HBV RNA destabilizer with potent antiviral activity, inhibiting HBsAg expressed from cccDNA and integrated HBV DNA in HBV cell-based models. AB-161 exhibits broad HBV genotype coverage, maintains activity against variants resistant to nucleoside analogs, and shows additive effects on HBV replication when combined with other classes of HBV inhibitors. In AAV-HBV-transduced mice, the dose-dependent reduction of HBsAg correlated with concentrations of AB-161 in the liver reaching above its effective concentration mediating 90% inhibition (EC90), compared to concentrations in plasma which were substantially below its EC90, indicating that high liver exposure drives antiviral activities. In preclinical 13-week safety studies, minor non-adverse delays in sensory nerve conductance velocity were noted in the high-dose groups in rats and dogs. However, all nerve conduction metrics remained within physiologically normal ranges, with no neurobehavioral or histopathological findings. Despite the improved neurotoxicity profile, microscopic findings associated with male reproductive toxicity were detected in dogs, which subsequently led to the discontinuation of AB-161's clinical development.


Assuntos
Complexos de Coordenação , Vírus da Hepatite B , Hepatite B Crônica , Naftalenossulfonatos , Masculino , Camundongos , Ratos , Animais , Cães , Vírus da Hepatite B/fisiologia , Antígenos de Superfície da Hepatite B/genética , RNA Viral , RNA Mensageiro , Antivirais/farmacologia , Antivirais/uso terapêutico , DNA Viral/genética , Hepatite B Crônica/tratamento farmacológico , DNA Circular
9.
Virus Genes ; 60(2): 235-239, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38349448

RESUMO

Hepatitis B virus (HBV) vaccine is composed of the purified hepatitis B surface antigen (HBsAg) that is produced by recombinant DNA technology. The neutralizing antibodies induced by vaccination target mainly the "a" determinant, aa124-147, of the outer viral envelope (HBsAg). In the present work, we demonstrate a case study for vaccinated patient that is infected with a vaccine escape HBV strain (Eg200). Characterization of the isolate Eg200 showed that it belongs to the genotype D and an uncommon sub-genotype in Egypt; D9. The DNA sequence encoding HBsAg was sequenced. Mutational analysis of the HBsAg showed a double mutation in the "a" determinant of this HBV isolate; T125M and P127T. However, such substitutions were found to be conserved to the detected serotype, ayw3, of Eg200 isolate. This case report indicates that continuous characterization of breakthrough vaccine escape strains of HBV is essential to develop the immunization strategies against HBV infection.


Assuntos
Vírus da Hepatite B , Hepatite B , Humanos , Antígenos de Superfície da Hepatite B/genética , Anticorpos Anti-Hepatite B , Vacinas contra Hepatite B/genética , Mutação , DNA Viral/genética
11.
Asian Pac J Cancer Prev ; 25(2): 371-377, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38415521

RESUMO

BACKGROUND: Chronic hepatitis B (CHB) is well-known as a major risk for liver cirrhosis and hepatocellular carcinoma (HCC). The A1762T/G1764A double mutation in the hepatitis B virus genome affects the production of HBe antigen and is established as a predictive marker for progression to HCC. Thus, this study aimed to investigate the prevalence and clinical significance of the mutation in Thai CHB patients. METHODS:  A cross-sectional study was conducted in 78 Thai CHB patients who were assessed for hepatitis B profiles, HBsAg, HBeAg and anti-HBeAg, transaminitis, liver fibrosis defined by FIB-4 (FIB-4) score and AST to platelet ratio index (APRI), alpha-fetoprotein (AFP) and active hepatitis B status. HBV A1762T/G1764A mutation was examined by SYBR Green I Real-time PCR. Chi-square and Mann-Whiney U tests were performed to determine the association between the mutation and variables. RESULTS: The prevalence of patients infected with the A1762T/G1764A mutation was 44.9%. The mutation was associated with HBeAg status (p=0.027) and HBsAg levels (p=0.008), transaminitis (p=0.011), and active hepatitis B (p=0.037), but not liver fibrosis markers, FIB-4 score and APRI, and AFP. Binary logistic regression identified the mutation as a predictive factor of active hepatitis B (OR 3.5, 95%CI, 1.1-11.3, p=0.037). Patients infected with the mutant exhibited significantly higher levels of HBsAg (p=0.011) and HBV viral load (p=0.047), but lower levels of HBeAg (p=0.12) than those infected with the wild-type HBV. CONCLUSION: The data indicate the high prevalence of the A1762T/G1764A mutation and its significant association with the severity of Thai CHB patients and the HBV mutation is proposed as a predictive marker of active hepatitis B status in CHB patients.


Assuntos
Carcinoma Hepatocelular , Hepatite B Crônica , Hepatite B , Neoplasias Hepáticas , Humanos , Vírus da Hepatite B/genética , Hepatite B Crônica/genética , Hepatite B Crônica/complicações , Estudos Transversais , alfa-Fetoproteínas , Antígenos de Superfície da Hepatite B/genética , Antígenos E da Hepatite B/genética , Relevância Clínica , DNA Viral/genética , Mutação , Cirrose Hepática/epidemiologia , Cirrose Hepática/genética , Cirrose Hepática/complicações , Genótipo
12.
Infect Genet Evol ; 119: 105572, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38367678

RESUMO

This investigation delineates an exhaustive analysis of the clinical, immunological, and genomic landscapes of hepatitis B virus (HBV) infection across a cohort of 22 verified patients. The demographic analysis unveiled a pronounced male bias (77.27%), with patient ages spanning 20 to 85 years and durations of illness ranging from 10 days to 4 years. Predominant clinical manifestations included fever, fatigue, anorexia, abdominal discomfort, and arthralgia, alongside observed co-morbidities such as chronic renal disorders and hepatocellular carcinoma. Antigenic profiling of the HBV envelope proteins elucidated significant heterogeneity among the infected subjects, particularly highlighted by discordances in the detection capabilities of small and large HBsAg assays, suggesting antigenic diversity. Quantitative assessment of viral loads unveiled a broad spectrum, accompanied by atypical HBeAg reactivity patterns, challenging the reliability of existing serological markers. Correlative studies between viral burden and antigenicity of the envelope proteins unearthed phenomena indicative of diagnostic evasion. Notably, samples demonstrating robust viral replication were paradoxically undetectable by the large HBsAg ELISA kit, advocating for more sophisticated diagnostic methodologies. Genotypic examination of three HBV isolates classified them as genotype D (D2), with phylogenetic alignment to strains from various global origins. Mutational profiling identified pivotal mutations within the basic core promoter and preS2/S1 regions, associated with an augmented risk of hepatocellular carcinoma. Further, mutations discerned in the small HBsAg and RT/overlap regions were recognized as contributors to vaccine and/or diagnostic escape mechanisms. In summation, this scholarly discourse elucidates the intricate interplay of clinical presentations, antigenic diversity, and genomic attributes in HBV infection, accentuating the imperative for ongoing investigative endeavors to refine diagnostic and therapeutic modalities.


Assuntos
Carcinoma Hepatocelular , Hepatite B Crônica , Hepatite B , Neoplasias Hepáticas , Humanos , Masculino , Vírus da Hepatite B , Antígenos de Superfície da Hepatite B/genética , Bangladesh/epidemiologia , Filogenia , Reprodutibilidade dos Testes , Mutação , Genótipo , Variação Antigênica , Genômica , DNA Viral/genética
13.
Virus Res ; 341: 199326, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38253259

RESUMO

BACKGROUND: PreS1-binding protein (PreS1BP), recognized as a nucleolar protein and tumor suppressor, influences the replication of various viruses, including vesicular stomatitis virus (VSV) and herpes simplex virus type 1 (HSV-1). Its role in hepatitis B virus (HBV) replication and the underlying mechanisms, however, remain elusive. METHODS: We investigated PreS1BP expression levels in an HBV-replicating cell and animal model and analyzed the impact of its overexpression on viral replication metrics. HBV DNA, covalently closed circular DNA (cccDNA), hepatitis B surface antigen (HBsAg), hepatitis B core antigen (HBcAg), and HBV RNA levels were assessed in HBV-expressing stable cell lines under varying PreS1BP conditions. Furthermore, co-immunoprecipitation and ubiquitination assays were used to detect PreS1BP- hepatitis B virus X protein (HBx) interactions and HBx stability modulated by PreS1BP. RESULTS: Our study revealed a marked decrease in PreS1BP expression in the presence of active HBV replication. Functional assays showed that PreS1BP overexpression significantly inhibited HBV replication and transcription, evidenced by the reduction in HBV DNA, cccDNA, HBsAg, HBcAg, and HBV RNA levels. At the molecular level, PreS1BP facilitated the degradation of HBx in a dose-dependent fashion, whereas siRNA-mediated knockdown of PreS1BP led to an increase in HBx levels. Subsequent investigations uncovered that PreS1BP accelerated HBx protein degradation via K63-linked ubiquitination in a ubiquitin-proteasome system-dependent manner. Co-immunoprecipitation assays further established that PreS1BP enhances the recruitment of the proteasome 20S subunit alpha 3 (PSMA3) for interaction with HBx, thereby fostering its degradation. CONCLUSIONS: These findings unveil a previously unidentified mechanism wherein PreS1BP mediates HBx protein degradation through the ubiquitin-proteasome system, consequentially inhibiting HBV replication. This insight positions PreS1BP as a promising therapeutic target for future HBV interventions. Further studies are warranted to explore the clinical applicability of modulating PreS1BP in HBV therapy.


Assuntos
Vírus da Hepatite B , Hepatite B , Animais , Humanos , Vírus da Hepatite B/genética , Antígenos de Superfície da Hepatite B/genética , Antígenos de Superfície da Hepatite B/metabolismo , Proteólise , Antígenos do Núcleo do Vírus da Hepatite B/metabolismo , DNA Viral/genética , DNA Viral/metabolismo , Complexo de Endopeptidases do Proteassoma/metabolismo , Células Hep G2 , Proteínas Virais Reguladoras e Acessórias/genética , DNA Circular/metabolismo , Replicação Viral/genética , RNA/metabolismo , Ubiquitinas/genética
14.
J Hepatol ; 80(1): 41-52, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-37858684

RESUMO

BACKGROUND & AIMS: HBsAg loss is only observed in a small proportion of patients with chronic hepatitis B (CHB) who undergo interferon treatment. Investigating the host factors crucial for functional cure of CHB can aid in identifying individuals who would benefit from peginterferon-α (Peg-IFNα) therapy. METHODS: We conducted a genome-wide association study (GWAS) by enrolling 48 patients with CHB who achieved HBsAg loss after Peg-IFNα treatment and 47 patients who didn't. In the validation stage, we included 224 patients, of whom 90 had achieved HBsAg loss, to validate the identified significant single nucleotide polymorphisms. To verify the functional involvement of the candidate genes identified, we performed a series of in vitro and in vivo experiments. RESULTS: GWAS results indicated a significant association between the rs7519753 C allele and serum HBsAg loss in patients with CHB after Peg-IFNα treatment (p = 4.85 × 10-8, odds ratio = 14.47). This association was also observed in two independent validation cohorts. Expression quantitative trait locus analysis revealed higher hepatic TP53BP2 expression in individuals carrying the rs7519753 C allele (p = 2.90 × 10-6). RNA-sequencing of liver biopsies from patients with CHB after Peg-IFNα treatment revealed that hepatic TP53BP2 levels were significantly higher in the HBsAg loss group compared to the HBsAg persistence group (p = 0.035). In vitro and in vivo experiments demonstrated that loss of TP53BP2 decreased interferon-stimulated gene levels and the anti-HBV effect of IFN-α. Mechanistically, TP53BP2 was found to downregulate SOCS2, thereby facilitating JAK/STAT signaling. CONCLUSION: The rs7519753 C allele is associated with elevated hepatic TP53BP2 expression and an increased probability of serum HBsAg loss post-Peg-IFNα treatment in patients with CHB. TP53BP2 enhances the response of the hepatocyte to IFN-α by suppressing SOCS2 expression. IMPACT AND IMPLICATIONS: Chronic hepatitis B (CHB) remains a global public health issue. Although current antiviral therapies are more effective in halting disease progression, only a few patients achieve functional cure for hepatitis B with HBsAg loss, highlighting the urgent need for a cure for CHB. This study revealed that the rs7519753 C allele, which is associated with high expression of hepatic TP53BP2, significantly increases the likelihood of serum HBsAg loss in patients with CHB undergoing Peg-IFNα treatment. This finding not only provides a promising predictor for HBsAg loss but identifies a potential therapeutic target for Peg-IFNα treatment. We believe our results are of great interest to a wide range of stakeholders based on their potential clinical implications.


Assuntos
Antivirais , Hepatite B Crônica , Humanos , Antivirais/uso terapêutico , Antígenos de Superfície da Hepatite B/genética , Hepatite B Crônica/tratamento farmacológico , Hepatite B Crônica/genética , Estudo de Associação Genômica Ampla , Quimioterapia Combinada , Interferon-alfa/farmacologia , Interferon-alfa/uso terapêutico , Polietilenoglicóis/uso terapêutico , Antígenos E da Hepatite B , Proteínas Recombinantes/uso terapêutico , Resultado do Tratamento , DNA Viral/genética , Proteínas Reguladoras de Apoptose
15.
Int J Infect Dis ; 138: 1-9, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37944585

RESUMO

OBJECTIVES: Here we investigate Hepatitis D virus (HDV)-prevalence in Italy and its fluctuations over time and we provide an extensive characterization of HDV-infected patients. METHODS: The rate of HDV seroprevalence and HDV chronicity was assessed in 1579 hepatitis B surface antigen (HBsAg)+ patients collected from 2005 to 2022 in Central Italy. RESULTS: In total, 45.3% of HBsAg+ patients received HDV screening with an increasing temporal trend: 15.6% (2005-2010), 45.0% (2011-2014), 49.4% (2015-2018), 71.8% (2019-2022). By multivariable model, factors correlated with the lack of HDV screening were alanine-aminotransferase (ALT) less than two times of upper limit of normality (<2ULN) and previous time windows (P <0.002). Furthermore, 13.4% of HDV-screened patients resulted anti-HDV+ with a stable temporal trend. Among them, 80.8% had detectable HDV-ribonucleic acid (RNA) (median [IQR]:4.6 [3.6-5.6] log copies/ml) with altered ALT in 89.3% (median [IQR]:92 [62-177] U/L). Anti-HDV+ patients from Eastern/South-eastern Europe were younger than Italians (44 [37-54] vs 53 [47-62] years, P <0.0001), less frequently nucleos(t)ide analogs (NUC)-treated (58.5% vs 80%, P = 0.026) with higher HDV-RNA (4.8 [3.6-5.8] vs 3.9 [1.4-4.9] log copies/ml, P = 0.016) and HBsAg (9461 [4159-24,532] vs 4447 [737-13,336] IU/ml, P = 0.032). Phylogenetic analysis revealed the circulation of HDV subgenotype 1e (47.4%) and -1c (52.6%). Notably, subgenotype 1e correlated with higher ALT than 1c (168 [89-190] vs 58 [54-88] U/l, P = 0.015) despite comparable HDV-RNA. CONCLUSIONS: HDV-screening awareness is increasing over time even if some gaps persist to achieve HDV screening in all HBsAg+ patients. HDV prevalence in tertiary care centers tend to scarcely decline in native/non-native patients. Detection of subgenotypes, triggering variable inflammatory stimuli, supports the need to expand HDV molecular characterization.


Assuntos
Hepatite D , Vírus Delta da Hepatite , Humanos , Antígenos de Superfície da Hepatite B/genética , Vírus da Hepatite B , Hepatite D/diagnóstico , Hepatite D/epidemiologia , Vírus Delta da Hepatite/genética , Itália/epidemiologia , Filogenia , Prevalência , RNA , Estudos Soroepidemiológicos , Replicação Viral , Adulto , Pessoa de Meia-Idade
16.
Liver Int ; 44(2): 614-624, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38105495

RESUMO

BACKGROUND AND AIMS: Hepatitis B virus X protein (HBx) play a key role in pathogenesis of HBV-induced hepatocellular carcinoma (HCC) by promoting epithelial to mesenchymal transition (EMT). In this study, we hypothesized that inhibition of HBx is an effective strategy to combat HCC. METHODOLOGY AND RESULTS: We designed and synthesized novel HBx gene specific single guide RNA (sgRNA) with CRISPR/Cas9 system and studied its in vitro effects on tumour properties of HepG2-2.15. Full length HBx gene was excised using HBx-CRISPR that resulted in significant knockdown of HBx expression in hepatoma cells. HBx-CRISPR also decreased levels of HBsAg and HBV cccDNA expression. A decreased expression of mesenchymal markers, proliferation and tumorigenic properties was observed in HBx-CRISPR treated cells as compared to controls in both two- and three- dimensional (2D and 3D) tumour models. Transcriptomics data showed that out of 1159 differentially expressed genes in HBx-CRISPR transfected cells as compared to controls, 70 genes were upregulated while 1089 genes associated with cell proliferation and EMT pathways were downregulated. CONCLUSION: Thus, targeting of HBx by CRISPR/Cas9 gene editing system reduces covalently closed circular DNA (cccDNA) levels, HBsAg production and mesenchymal characteristics of HBV-HCC cells. We envision inhibition of HBx by CRISPR as a novel therapeutic approach for HBV-induced HCC.


Assuntos
Carcinoma Hepatocelular , Hepatite B , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/genética , Vírus da Hepatite B/genética , Neoplasias Hepáticas/genética , Antígenos de Superfície da Hepatite B/genética , Edição de Genes , Sistemas CRISPR-Cas , Transição Epitelial-Mesenquimal/genética , RNA Guia de Sistemas CRISPR-Cas , DNA Circular , Replicação Viral , Células Hep G2
17.
Sci Rep ; 13(1): 22633, 2023 12 19.
Artigo em Inglês | MEDLINE | ID: mdl-38114689

RESUMO

Knowledge about the epidemiology of hepatitis D virus (HDV) is essential for effective screening and management. Our study aimed to update the prevalence of HDV infection among patients with hepatitis B virus (HBV) infection at hepatology clinics in Thailand. We enrolled HBV-infected patients from hepatology clinics at King Chulalongkorn Memorial Hospital, Bangkok, Thailand, between June 2022 and November 2023. Demographic, biochemical characteristics, and liver-related complications (LRC), including cirrhosis and hepatocellular carcinoma, were reviewed. The competitive enzyme and chemiluminescence immunoassays were used to detect anti-HDV antibodies. Real-time polymerase chain reaction (RT-PCR) was used to test for HDV RNA in anti-HDV-positive patients. The HDV genotype was identified in detectable HDV RNA samples. Of the 702 enrolled patients, four (0.6%) had positive and equivocal for both anti-HDV tests. Two (50.0%) of the four patients tested positive for HDV RNA and genotype 1 was identified; one had multiple risk factors. Anti-HDV seroprevalence was not significantly different between patients with and without LRC. In conclusion, HDV co-infection is less common in Thailand than globally. Additionally, our study identified genotype 1, the predominant HDV genotype worldwide, and observed co-infection even without LRC.


Assuntos
Coinfecção , Hepatite B Crônica , Hepatite B , Hepatite D , Neoplasias Hepáticas , Humanos , Vírus Delta da Hepatite/genética , Hepatite B Crônica/complicações , Hepatite B Crônica/epidemiologia , Prevalência , Centros de Atenção Terciária , Coinfecção/epidemiologia , Coinfecção/complicações , Tailândia/epidemiologia , RNA Viral/genética , RNA Viral/análise , Genótipo , Hepatite D/complicações , Hepatite D/epidemiologia , Hepatite B/complicações , Hepatite B/epidemiologia , Vírus da Hepatite B/genética , Antígenos de Superfície da Hepatite B/genética , Neoplasias Hepáticas/complicações
18.
Sci Rep ; 13(1): 22829, 2023 12 20.
Artigo em Inglês | MEDLINE | ID: mdl-38129531

RESUMO

Hepatitis B virus (HBV)-transgenic mice exhibit competent innate immunity and are therefore an ideal model for considering intrinsic or cell-based mechanisms in HBV pathophysiology. A highly replicative model that has been little used, let alone characterized, is the Tg1.4HBV-s-rec strain derived from cross breeding of HBV-transgenic mouse models that either accumulate (Alb/HBs, Tg[Alb1-HBV]Bri44) or lack (Tg1.4HBV-s-mut) the hepatitis B surface antigen (HBsAg). Tg1.4HBV-s-rec hepatocytes secreted HBsAg, Hepatitis B extracellular antigen (HBeAg) and produced HBV virions. Transmission electron microscopy visualised viral particles (Tg1.4HBV-s-rec), nuclear capsid formations (Tg1.4HBV-s-mut and Tg1.4HBV-s-rec) and endoplasmic reticulum malformations (Alb/HBs). Viral replication in Tg1.4HBV-s-rec and Tg1.4HBV-s-mut differed in HBsAg expression and interestingly in the distribution of HBV core antigen (HBcAg) and HBV × protein. While in Tg1.4HBV-s-mut hepatocytes, the HBcAg was located in the cytoplasm, in Tg1.4HBV-s-rec hepatocytes, the HBcAg appeared in the nuclei, suggesting a more productive replication. Finally, Tg1.4HBV-s-rec mice showed symptoms of mild hepatitis, with reduced liver function and elevated serum transaminases, which appeared to be related to natural killer T cell activation. In conclusion, the study of Alb/HBs, Tg1.4HBV-s-mut and their F1 progeny provides a powerful tool to elucidate HBV pathophysiology, especially in the early HBeAg-positive phases of chronic infection and chronic hepatitis.


Assuntos
Hepatite A , Hepatite B , Camundongos , Animais , Vírus da Hepatite B/fisiologia , Antígenos de Superfície da Hepatite B/genética , Antígenos do Núcleo do Vírus da Hepatite B , Antígenos E da Hepatite B/genética , Antígenos da Hepatite B , Replicação Viral , Camundongos Transgênicos , DNA Viral , Fígado
19.
Viruses ; 15(12)2023 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-38140543

RESUMO

Hepatitis B virus (HBV) genotype C is a prevalent HBV genotype in the Chinese population. Although genotype C shows higher sequence heterogeneity and more severe liver disease than other genotypes, its pathogenesis and immunological traits are not yet fully elucidated. In this study, we first established and chemically synthesized the consensus sequence based on representative 138 full-length HBV genotype C genomes from the Chinese population. The pHBV1.3C plasmid system, containing a 1.3-fold full-length HBV genotype C consensus sequence, was constructed for subsequent validation. Next, we performed functional assays to investigate the replicative competence of pHBV1.3C in vitro through the transient transfection of HepG2 and Huh7 cells and validated the in vivo function via a hydrodynamic injection to BALB/c recipient mice. The in vitro investigation revealed that the extracellular HBV DNA and intracellular replicative intermediate (i.e., pregenomic RNA, pgRNA) were apparently measurable at 48 h, and the HBsAg and HBcAg were still positive in hepatoma cells at 96 h. We also found that HBsAg and HBeAg accumulated at the extracellular and intracellular levels in a time-dependent manner. The in vivo validation demonstrated that pHBV1.3C plasmids induced HBV viremia, triggered morphological changes and HBsAg- or HBcAg- positivity of hepatocytes, and ultimately caused inflammatory infiltration and focal or piecemeal necrosis in the livers of the murine recipients. HBV protein (HBsAg) colocalized with CD8+ T cells or CD4+ T cells in the liver. F4/80+ Kupffer cells were abundantly recruited around the altered murine hepatocytes. Taken together, our results indicate that the synthetic consensus sequence of HBV genotype C is replication-competent in vitro and in vivo. This genotype C consensus genome supports the full HBV life cycle, which is conducive to studying its pathogenesis and immune response, screening novel antiviral agents, and further optimizing testing and therapeutics.


Assuntos
Vírus da Hepatite B , Hepatite B , Camundongos , Animais , Vírus da Hepatite B/fisiologia , Antígenos de Superfície da Hepatite B/genética , Antígenos do Núcleo do Vírus da Hepatite B/genética , Linfócitos T CD8-Positivos/metabolismo , Replicação Viral , Genótipo , Camundongos Endogâmicos BALB C , China/epidemiologia , DNA Viral/metabolismo
20.
Per Med ; 20(6): 503-510, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37909375

RESUMO

Background: Genetic polymorphism can affect the response to antiviral therapy of chronic hepatitis B (CHB) patients. Objective: The study examined the genetic association of the IL-6 rs1800796 polymorphism with PEGylated IFN-α (PegIFN-α) treatment response in hepatitis B surface antigen (HBsAg)-positive CHB patients. Methods: Direct sequencing was done for the genotyping of the rs1800796 polymorphism in the serum of CHB patients. Results: More patients with combined response (n = 95) carried IL-6 rs1800796 GC genotypes, while CC genotype carriers possessed reduced HBeAg seroconversion rate and high values of hepatitis B virus DNA. Baseline HBsAg and HBeAg and IL-6 rs1800796 CC genotype were independently related to PegIFN-α treatment response. Conclusion: Detection of the IL-6 rs1800796 genotype in CHB patients may have potential guiding significance for PegIFN-α response.


Assuntos
Antígenos de Superfície da Hepatite B , Hepatite B Crônica , Humanos , Antígenos de Superfície da Hepatite B/genética , Antígenos de Superfície da Hepatite B/uso terapêutico , Antivirais/uso terapêutico , Interleucina-6/genética , Interleucina-6/uso terapêutico , Antígenos E da Hepatite B/genética , Antígenos E da Hepatite B/uso terapêutico , Hepatite B Crônica/tratamento farmacológico , Hepatite B Crônica/genética , Resultado do Tratamento , Interferon-alfa/uso terapêutico , Polimorfismo Genético , Polietilenoglicóis/uso terapêutico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...